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SOME OPEN PROBLEMS

CONCERNING THE

CONVERGENCE OF POSITIVE SERIES
∗
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Abstract

We discuss some old results due to Abel and Olivier concerning the

convergence of positive series and prove a set of necessary conditions

involving convergence in density.
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1 Introduction

Understanding the nature of a series is usually a di�cult task. The following
two striking examples can be found in Hardy's book (17), Orders of in�nity :
the series ∑

n≥3

1

n lnn (ln lnn)2

converges to 38.43..., but does it so slow that one needs to sum up its �rst
103.14×1086 terms to get the �rst two exact decimals of the sum. In the same
time, the series ∑

n≥3

1

n lnn (ln lnn)

is divergent but its partial sums exceed 10 only after 1010
100

terms. See (17),
pp. 60-61. On page 48 of the same book, Hardy mentions an interesting
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result (attributed to De Morgan and Bertrand) about the convergence of the
series of the form∑

n≥1

1

ns
and

∑
n≥nk

1

n (lnn) (ln lnn) · · · (ln ln · · · lnn︸ ︷︷ ︸
k times

)s
, (MBk)

where k is an arbitrarily �xed natural number, s is a real number and nk

is a number large enough to ensure that ln ln · · · lnn︸ ︷︷ ︸
k times

is positive. Precisely,

such a series is convergent if s > 1 and divergent otherwise. This is an
easy consequence of Cauchy's condensation test (see Knopp (21), p. 122).
Another short argument is provided by Hardy (18) in his Course of Pure

Mathematics, on p. 376.
The above discussion makes natural the following problem.

Problem 1. What decides if a positive series is convergent or divergent?

Is there any universal convergence test? Is there any pattern in conver-

gence?

This is an old problem which received a great deal of attention over the
years. Important progress was made during the 19th Century by people
like A.-L. Cauchy, N. H. Abel, C. F. Gauss, A. Pringsheim and Paul du
Bois-Reymond.

In 1914, Herman Müntz (24) established an unexpected connection be-
tween approximation theory and the divergence of series. Precisely, if λ0 =
0 < λ1 < λ2 < · · · is an increasing sequence, then the vector space gener-
ated by the monomials xλk is a dense subset of C ([0, 1],R) if and only if∑∞

k=1
1
λk

= ∞.

In the last �fty years the interest shifted toward combinatorial aspects
of convergence/divergence, although papers containing new tests of conver-
gence continue to be published. See for example (2) and (23). This paper's
purpose is to discuss the relationship between the convergence of a positive
series and the convergence properties of the summand sequence.

2 Some history

We start by recalling an episode from the beginning of Analysis, that marked
the moment when the series of type (MBk) entered the attention of mathe-
maticians. M. Goar (14) has written the story in more detail.

In 1827, L. Olivier (28) published a paper claiming that the harmonic
series represents a kind of �boundary" case with which other potentially
convergent series of positive terms could be compared. Speci�cally, he as-
serted that a positive series

∑
an whose terms are monotone decreasing is

convergent if and only if nan → 0. One year later, Abel (1) disproved this



Some open problems concerning the convergence of positive series 87

convergence test by considering the case of the (divergent) positive series∑
n≥2

1
n lnn . In the same Note, Abel (1) noticed two other important facts

concerning the convergence of positive series:

Lemma 1. There is no positive function φ such that a positive series
∑

an
whose terms are monotone decreasing is convergent if and only if φ(n)an →
0. In other words, there is no �boundary" positive series.

Lemma 2. If
∑

an is a divergent positive series, then the series
∑(

an∑n
k=1 ak

)
is also divergent. As a consequence, for each divergent positive series there

is always another one which diverges slower.

A fact which was probably known to Abel (although it is not made ex-
plicit in his Note) is that the whole scale of divergent series∑

n≥nk

1

n (lnn) (ln lnn) · · · (ln ln · · · lnn︸ ︷︷ ︸
k times

)
for k = 1, 2, 3, ... (A)

comes from the harmonic series
∑ 1

n , by successive application of Lemma 2
and the following result on the generalized Euler's constant.

Lemma 3. (C. Maclaurin and A.-L. Cauchy). If f is positive and strictly

decreasing on [0,∞), there is a constant γf ∈ (0, f(1)] and a sequence

(Ef (n))n with 0 < Ef (n) < f(n), such that

n∑
k=1

f(k) =

∫ n

1
f(x) dx+ γf + Ef (n) (MC)

for all n.

See (4), Theorem 1, for details.
If f(n) → 0 as n → ∞, then (MC) implies

n∑
k=1

f(k)−
∫ n

1
f(x) dx → γf .

γf is called the generalized Euler 's constant, the original corresponding
to f(x) = 1/x.

Coming back to Olivier's test of convergence, we have to mention that the
necessity part survived the scrutiny of Abel and became known as Olivier's
Theorem:

Theorem 1. If
∑

an is a convergent positive series and (an)n is monotone

decreasing, then nan → 0.
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Remark 1. If
∑

an is a convergent positive series and (nan)n is mono-

tone decreasing, then (n lnn) an → 0. In fact, according to the well known

estimate of harmonic numbers,

n∑
1

1

k
= log n+ γ +

1

2n
− 1

12n2
+

εn
120n4

,

where εn ∈ (0, 1), we get

n∑
⌊
√
n⌋

ak =
n∑

⌊
√
n⌋

(kak)
1

k
≥ nan

n∑
⌊
√
n⌋

1

k
≥ 1

2
(n lnn) an − 1

2(⌊
√
n⌋ − 1)

for all n ≥ 2. Here ⌊x⌋ denotes the largest integer that does not exceeds x.

Simple examples show that the monotonicity condition is vital for Olivier's
Theorem. See the case of the series

∑
an, where an = lnn

n if n is a square,
and an = 1

n2 otherwise.

The next result provides an extension of the Olivier's Theorem to the
context of complex numbers.

Theorem 2. Suppose that (an)n is a nonincreasing sequence of positive num-

bers converging to 0 and (zn)n is a sequence of complex numbers such that

the series
∑

anzn is convergent. Then

lim
n→∞

(
n∑

k=1

zk

)
an = 0.

Proof. Let ε > 0 arbitrarily �xed. Since the series
∑

anzn is convergent, one
can choose a natural number m > 0 such that

∣∣∣∣∣
n∑

k=m+1

akzk

∣∣∣∣∣ < ε

4

for every n ≥ m+ 1. We will estimate an (zm+1 + · · ·+ zn) by using Abel's
identity. In fact, letting

Sn = am+1zm+1 + · · ·+ anzn for n ≥ m+ 1,
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we get

|an (zm+1 + · · ·+ zn)| = an

∣∣∣∣ 1

am+1
am+1zm+1 + · · ·+ 1

an
anzn

∣∣∣∣
= an

∣∣∣∣ 1

am+1
Sm+1 +

1

am+2
(Sm+2 − Sm+1) + · · ·+ 1

an
(Sn − Sn−1)

∣∣∣∣
= an

∣∣∣∣( 1

am+1
− 1

am+2

)
Sm+1 + · · ·+

(
1

an−1
− 1

an

)
Sn−1 +

1

an
Sn

∣∣∣∣
≤ εan

4

((
1

am+2
− 1

am+1

)
+ · · ·+

(
1

an
− 1

an−1

)
+

1

an

)
=

εan
4

(
2

an
− 1

am+1

)
<

ε

2
.

Since limn→∞ an = 0, one may choose an index N(ε) > m such that

|an (z1 + · · ·+ zm)| < ε

2

for every n > N(ε) and thus

|an (z1 + · · ·+ zn)| ≤ |an (z1 + · · ·+ zm)|+ |an (zm+1 + · · ·+ zn)| < ε

for every n > N(ε).

In 2003, T. �alát and V. Toma (29) made the important remark that the
monotoni-city condition in Theorem 1 can be dropped if the convergence of
(nan)n is weakened:

Theorem 3. If
∑

an is a convergent positive series, then nan → 0 in den-

sity.

In order to explain the terminology, recall that a subset A of N has zero
density if

d(A) = lim
n→∞

#(A ∩ {1, . . . , n})
n

= 0,

positive lower density if

d(A) = lim inf
n→∞

#(A ∩ {1, . . . , n})
n

> 0,

and positive upper density if

d̄(A) = lim sup
n→∞

#(A ∩ {1, . . . , n})
n

> 0.

Here # stands for cardinality.
We say that a sequence (xn)n of real numbers converges in density to

a number x (denoted by (d)-limn→∞ xn = x) if for every ε > 0 the set
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A(ε) = {n : |xn − x| ≥ ε} has zero density. Notice that (d)− limn→∞ xn = x
if and only if there is a subset J of N of zero density such that

lim
n→∞
n/∈J

an = 0.

This notion can be traced back to B. O. Koopman and J. von Neumann
((22), pp. 258-259), who proved the integral counterpart of the following
result:

Theorem 4. For every sequence of nonnegative numbers,

lim
n→∞

1

n

n∑
k=1

ak = 0 ⇒ (d)- lim
n→∞

an = 0.

The converse works under additional hypotheses, for example, for bounded

sequences.

Proof. Assuming limn→∞
1
n

∑n
k=1 ak = 0, we associate to each ε > 0 the set

Aε = {n ∈ N : an ≥ ε} . Since

|{1, ..., n} ∩Aε|
n

≤ 1

n

n∑
k=1

ak
ε

≤ 1

εn

n∑
k=1

ak → 0 as n → ∞,

we infer that each of the sets Aε has zero density. Therefore (d)-limn→∞ an =
0.

Suppose now that (an)n is bounded and (d)-limn→∞ an = 0. Then for
every ε > 0 there is a set J of zero density outside which an < ε. Since

1

n

n∑
k=1

ak =
1

n

∑
k∈{1,...,n}∩J

ak +
1

n

∑
k∈{1,...,n}\J

ak

≤ |{1, ..., n} ∩ J |
n

· sup
k∈N

ak + ε

and limn→∞
|{1,...,n}∩J |

n = 0, we conclude that limn→∞
1
n

∑n
k=1 ak = 0.

Remark 2. Theorem 4 is related to the Tauberian theory, whose aim is to

provide converses to the well known fact that for any sequence of complex

numbers,

lim
n→∞

zn = z ⇒ lim
n→∞

1

n

n∑
k=1

zk = z.
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Recall here the famous Hardy-Littlewood Tauberian theorem: If |zn − zn−1| =
O (1/n) and

lim
n→∞

1

n

n∑
k=1

zk = z,

then limn→∞ zn = z. See (19), Theorem 28.

The aforementioned result of �alát and Toma is actually an easy conse-
quence of Theorem 4. Indeed, if

∑
an is a convergent positive series, then

its partial sums Sn =
∑n

k=1 ak constitute a convergent sequence with limit
S. By Cesàro's Theorem,

lim
n→∞

S1 + · · ·+ Sn−1

n
= S,

whence

lim
n→∞

a1 + 2a2 + · · ·+ nan
n

= lim
n→∞

(
Sn − S1 + · · ·+ Sn−1

n

)
= 0.

According to Theorem 4, this fact is equivalent to the convergence in density
of (nan)n to 0.

In turn, the result of �alát and Toma implies Olivier's Theorem. Indeed,
if the sequence (an) is decreasing, then

a1 + 2a2 + · · ·+ nan
n

≥ (1 + 2 + · · ·+ n)an
n

=
(n+ 1)an

2

which implies that if

lim
n→∞

a1 + 2a2 + · · ·+ nan
n

= 0

then limn nan = 0.

If
∑

an is a convergent positive series, then so is
∑

aφ(n), whenever
φ : N → N is a bijective map. This implies that naφ(n) → 0 in density (a
conclusion that doesn't work for usual convergence).

The monograph of H. Furstenberg (13) outlines the importance of con-
vergence in density in ergodic theory. In connection to series summation,
the concept of convergence in density was rediscovered (under the name of
statistical convergence) by Steinhaus (30) and Fast (12) (who mentioned
also the �rst edition of Zygmund's monograph (33), published in Warsaw in
1935). Apparently unaware of the Koopman-von Neumann result, �alát and
Toma referred to these authors for the roots of convergence in density.

At present there is a large literature about this concept and its many
applications. We only mention here the recent papers by M. Burgin and O.
Duman (7) and P. Therán (32).
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3 An extension of �alát - Toma Theorem

In this section we will turn our attention toward a generalization of the
result of �alát and Toma mentioned above. This generalization involves
the concepts of convergence in density and convergence in lower density.
A sequence (xn)n of real numbers converges in lower density to a number
x (abbreviated, (d)-limn→∞ xn = x) if for every ε > 0 the set A(ε) =
{n : |xn − x| ≥ ε} has zero lower density.

Theorem 5. Assume that
∑

an is a convergent positive series and (bn)n is

a nondecreasing sequence of positive numbers such that
∑∞

n=1
1
bn

= ∞. Then

(d)- lim
n→∞

anbn = 0,

and this conclusion can be improved to

(d)- lim
n→∞

anbn = 0,

provided that infn
n
bn

> 0.

An immediate consequence is the following result about the speed of con-
vergence to 0 of the general term of a convergent series of positive numbers.

Corollary 1. If
∑

an is a convergent series of positive numbers, then for

each k ∈ N,

(d) - lim
n→∞

n (lnn) (ln lnn) · · · (ln ln · · · lnn︸ ︷︷ ︸
k times

)an

 = 0. (Dk)

The proof of Theorem 5 is based on two technical lemmas:

Lemma 4. Suppose that (cn)n is a nonincreasing sequence of positive num-

bers such that
∑∞

n=1 cn = ∞ and S is a set of positive integers with positive

lower density. Then the series
∑

n∈S cn is also divergent.

Proof. By our hypothesis there are positive integers p and N such that

|S ∩ {1, ..., n}|
n

>
1

p

whenever n ≥ N . Then |S ∩ {1, ..., kp}| > k for every k ≥ N/p, which yields∑
n∈S

cn =

∞∑
k=1

cnk
≥

∞∑
k=1

ckp

=
1

p

∞∑
k=1

pckp

≥ 1

p
[(cp + · · ·+ c2p−1) + (c2p + · · ·+ c3p−1) + · · · ]

=
1

p

∞∑
k=p

ck = ∞.
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Our second lemma shows that a subseries
∑

n∈S
1
n of the harmonic series

is divergent whenever S is a set of positive integers with positive upper
density.

Lemma 5. If S is an in�nite set of positive integers and (an)n∈S is a nonin-

creasing positive sequence such that
∑

n∈S an < ∞ and inf {ncn : n ∈ S} =
α > 0, then S has zero density.

Proof. According to our hypotheses, the elements of S can be counted as
k1 < k2 < k3 < .... Since

0 <
n

kn
=

nakn
knakn

≤ 1

α
nakn ,

we infer from Theorem 1 that limn→∞
n
kn

= 0. Then

|S ∩ {1, ..., n)|
n

=
p

n
=

|S ∩ {1, ..., kp)|
kp

≤ p

kp
→ 0,

whence

d(S) = lim
n→∞

|S ∩ {1, ..., n)|
n

= 0.

Proof of Theorem 5. For ε > 0 arbitrarily �xed we denote

Sε = {n : anbn ≥ ε} .

Then

∞ >
∑

n∈Sε

an ≥
∑

n∈Sε

1

bn
,

whence by Lemma 4 it follows that Sε has zero lower density. Therefore
(d)-limn→∞ anbn = 0. When infn

n
bn

= α > 0, then

∞ >
∑

n∈Sε

1

bn
≥ α

∑
n∈Sε

1

n

so by Lemma 5 we infer that Sε has zero density. In this case, (d)-limn→∞ anbn =
0. �
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4 Convergence associated to higher order densities

The convergence in lower density is very weak. A better way to formu-
late higher order �alát-Toma type criteria is to consider the convergence in
harmonic density. We will illustrate this idea by proving a non-monotonic
version of Remark 1.

The harmonic density dh is de�ned by the formula

dh(A) = lim
n→∞

1

lnn

n∑
k=1

χA(k)

k
,

and the limit in harmonic density, (dh)-limn→∞ an = ℓ, means that each of
the sets {n : |an − ℓ| ≥ ε} has zero harmonic density, whenever ε > 0. Since

d(A) = 0 implies dh(A) = 0,

(see (16), Lemma 1, p. 241), it follows that the existence of limit in density
assures the existence of limit in harmonic density.

The harmonic density has a nice application to Benford's law, which
states that in lists of numbers from many real-life sources of data the leading
digit is distributed in a speci�c, non-uniform way. See (8) for more details.

Theorem 6. If
∑

an is a convergent positive series, then

(dh)- lim
n→∞

(n lnn) an = 0.

Proof. We start by noticing the following analogue of Lemma 5: If (bn)n is
a positive sequence such that (nbn)n is decreasing and

inf (n lnn) bn = α > 0,

then every subset S of N for which
∑

n∈S bn < ∞ has zero harmonic density.
To prove this assertion, it su�ces to consider the case where S is in�nite

and to show that

lim
x→∞

(∑
k∈S∩{1,...,n}

1

k

)
nbn = 0. (H)

The details are very similar to those used in Lemma 5, and thus they are
omitted.

Having (H) at hand, the proof of Theorem 6 can be completed by con-
sidering for each ε > 0 the set

Sε = {n : (n lnn) an ≥ ε} .

Since
ε
∑

n∈Sε

1

n lnn
≤
∑

n∈Sε

an < ∞,

by the aforementioned analogue of Lemma 5 applied to bn = 1/ (n lnn) we in-
fer that Sε has zero harmonic density. Consequently (dh)-limx→∞ (n lnn) an =
0, and the proof is done.
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An integral version of the previous theorem can be found in (25) and
(26).

One might think that the ful�lment of a sequence of conditions like (Dk),
for all k ∈ N, (or something similar) using other series, is strong enough to
force the convergence of a positive series

∑
an. That this is not the case was

shown by Paul du Bois-Raymond (6) (see also (21), Ch. IX, Section 41) who
proved that for every sequence of divergent positive series, each divergent
essentially slower than the previous one, it is possible to construct a series
diverging slower than all of them.

Under these circumstances the following problem seems of utmost inter-
est:

Problem 2. Find an algorithm to determine whether a positive series is

convergent or not.

5 The relevance of the harmonic series

Surprisingly, the study of the nature of positive series is very close to that
of subseries of the harmonic series

∑ 1
n .

Lemma 6. If (an)n is an unbounded sequence of real numbers belonging to

[1,∞), then the series
∑ 1

an
and

∑ 1
⌊an⌋ have the same nature.

Proof. This follows from the Comparison Test and the inequality ⌊x⌋ ≤ x <
2⌊x⌋, which works for every x ≥ 1.

By combining Lemma 5 and Lemma 6 we infer the following result:

Corollary 2. If (an)n is a sequence of positive numbers whose integer parts

form a set of positive upper density, then the series
∑ 1

an
is divergent.

The converse of Corollary 2 is not true. A counterexample is provided
by the series

∑
p=prime

1
p , of inverses of prime numbers, which is divergent

(see (3) or (10) for a short argument). According to an old result due to
Chebyshev, if π(n) = |{p ≤ n : p prime}| , then

7

8
<

π(n)

n/ lnn
<

9

8

and thus the set of prime numbers has zero density.
The following estimates of the kth prime number,

k (ln k + ln ln k − 1) ≤ pk ≤ k (ln k + ln ln k) for k ≥ 6,

which are made available by a recent paper of P. Dusart (9), show that
the speed of divergence of the series

∑
p=prime

1
p is comparable with that of∑ 1

k(ln k+ln ln k) .
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Lemma 6 suggests that the nature of positive series
∑ 1

an
could be re-

lated to some combinatorial properties of the sequence (⌊an⌋)n (of natural
numbers).

Problem 3. Given an increasing function φ : N →(0,∞) with limn→∞ φ(n) =
∞, we de�ne the upper density of weight φ by the formula

d̄φ(A) = lim sup
n→∞

|A ∩ [1, n]|
φ(n)

.

Does every subset A ⊂ N with d̄n/ lnn(A) > 0 generate a divergent sub-

series
∑

n∈A
1
n of the harmonic series?

What about the case of other weights

n/[(lnn) (ln lnn) · · · (ln ln · · · lnn︸ ︷︷ ︸
k times

)]?

This problem seems important in connection with the following long-
standing conjecture due to P. Erdös:

Conjecture 1. (P. Erdös). If the sum of reciprocals of a set A of integers

diverges, then that set contains arbitrarily long arithmetic progressions.

This conjecture is still open even if one only seeks a single progression
of length three. However, in the special case where the set A has positive
upper density, a positive answered was provided by E. Szemerédi (31) in
1975. Recently, Green and T. Tao (15) proved Erdös' Conjecture in the case
where A is the set of prime numbers, or a relatively dense subset thereof.

Theorem 7. Assuming the truth of Erdös' conjecture, any unbounded se-

quence (an)n of positive numbers whose sum of reciprocals
∑

n
1
an

is divergent

must contain arbitrarily long ε-progressions, for any ε > 0.

By an ε-progression of length n we mean any string c1, ..., cn such that

|ck − a− kr| < ε

for suitable a, r ∈ R and all k = 1, ..., n.
The converse of Theorem 7 is not true. A counterexample is provided by

the convergent series
∑∞

n=1

(
1

10n+1 + · · ·+ 1
10n+n

)
.

It seems to us that what is relevant in the matter of convergence is not
only the existence of some progressions but the number of them. We believe
not only that the divergent subseries of the harmonic series have progressions
of arbitrary length but that they have a huge number of such progressions
and of arbitrarily large common di�erences. Notice that the counterexample
above contains only progressions of common di�erence 1 (or subprogressions
of them). Hardy and Littlewood's famous paper (20) advanced the hypothe-
sis that the number of progressions of length k is asymptotically of the form
Ckn

2/ lnk n, for some constant Ck.
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